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Abstract. Revealing the context of a scene from low-level features rep-
resentation, is a challenging task for quite a long time. The classification
of landscapes scenes to urban and rural categories is a preliminary task
for landscapes scenes understanding. Having a global idea about the
scene context (rural or urban) before investigating its details, would be
an interesting way to predict the content of that scene. In this paper,
we propose a novel features representation based on skyline, colour and
texture, transformed by a sparse coding using Stacked Auto-Encoder.
To evaluate our proposed approach; we construct a new database called
SKYLINEScene Database containing 2000 images of rural and urban
landscapes with a high degree of diversity. Many experiments were car-
ried out using this database. Our approach shows it robustness in land-
scapes scenes classification.

keywords: Deep Neural Network; Auto-Encoder; Scene Classification; Sky-
line and Curvature

1 Introduction

Having a wider idea about the preference of people to the skyline of the cities
where they live or they want to visit , is an important issue in social urbanism.
This study was in the framework of a sustainable city project SKYLINE. The
main purposes of that project is the identification and the systematic-analyze
of the landscapes perceptions of the general public and practitioners by corre-
sponding the aspects taken from the skyline photographs and the perceptions
collected from an interesting number of audiences within European cities (The
example of London and Lyon). One of our distant goals is to objectify the effect
of natural elements such as vegetation and mountains on the representations of
urban landscapes using a photo-questionnaire system.

The first step to achieve our goals is to reveal, from a landscape photo, if it rep-
resents a city or a rural scene, by scanning the whole skyline. The Skyline could
be defined as the silhouette describing a place, or in other words, the profile of
some cities or towns or different places. The nature of a skyline is an important



cue on evaluating the landscapes perceptions. So, classifying a landscape scenes
into urban and rural ones would be a sufficient first step for our purposes. This
study is dedicated to the classification of landscapes scenes based on a deep
neural approach with a new combination of some features which are geometric,
texture and color.

The rest of the paper is composed of four major sections. The first one exposes
some related works. Then, in the second part, we will describe our proposed neu-
ral approach for landscapes classification. After that we present our constructed
database and some first results evaluating our proposed approach. The last sec-
tion contains the conclusions about the realized works and some perspectives
that will be the goal of a future work.

2 Related works

Natural scenes classification is an interesting task for a variety of applications of
computer vision (content-based image retrieval systems [5], pattern recognition,
image understanding). This topic can touch many facets of computer vision like
scene segmentation or labelling, scene parsing or object detection [4].

The work [3] proposed a hybrid holistic/semantic approach for natural scenes
classification. Using the Hierarchical Matching Pursuit (HMP) to learn holis-
tic features and the Semantic Spatial Pyramid SSP to represent the spatial
object information, this work combined these two strategies with a support vec-
tor machine (SVM) to propose a scene classification methodology. Their hybrid
approach reached a global accuracy of 78.2% using a dataset of 700 images con-
taining six natural scenes (forests, coasts, rivers/lakes , plains, mountains, and
sky/clouds). Another work touching the facet of scene parsing [13] proposed an
approach for outdoor scenes classification. The first step in their process is to
generate Spatially Constrained Location Prior (SCLP). The second one is the
prediction of class probabilities using visual feature based classifiers. This last
step is followed by the propagation of contextual class votes based on SCLP to
reach the final step which is the integration of visual feature based class proba-
bilities and contextual class votes. The visual features used in that work were the
RGB histograms in addition to the texton and SIFT histograms. They adopted
the SVM with radial basis function kernel as a classifier. The performance of the
proposed approach in [13] was evaluated in two datasets (The Stanford Back-
ground and SIFT Flow) and gave a global accuracy of 81.2% and a class accuracy
of 71.8% for the first dataset. Reviewing the approaches that combine object de-
tection and scene classification, we found out that work [12] that proposes CRF
(conditional random field) models reasoning jointly about object detection, im-
age labelling and scene classification. To create the unitary potentials (composing
their holistic model) for the scenes, they used a standard bag-of-words spatial
pyramid with a sparse coding dictionary on RGB histograms, color moment
invariants, SIFT features and colorSIFT, and trained a linear one-vs-all SVM
classifier. The scene classification accuracy reached in this work was 80.6% on
the MSRC-21 dataset (origMSRC).



3 Proposed system

As shown in the Fig. 1 the proposed system is composed of three main process-
ing steps: 1) the features extraction from landscapes images based on the skyline
and the texton, 2) the training of a deep neural network (sparse autoencoders),
and 3) the classification process based on the extracted visual features.

We used a deep neural network to achieve the task of skylines classification based
on the geometric and the texture-color features. Thus, we train a neural network
using two hidden layers. These hidden layers are trained individually using au-
toencoders. After that, for the classification process, we compared the results
using a support vector machine and a softmax classifier used is the Support
Vector Machines.
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Fig. 1: Architecture of the proposed system
3.1 Features Extraction

3.1.1 Skylines Geometric Description

Based on the sky line extracted from landscapes scenes, we took out suitable
measurements allowing to distinguish between rural landscapes and urban land-
scapes.

The straight lines classification The idea was to take a look at the skyline
as a polyline and determine if there is an important number of straight lines. So,
we begin by extracting the straight line segments based on the Douglas-Peucker
approximation algorithm. Then, we compute the resulting segments length. Af-
ter that, we create categories based on segments length distribution; and then
counting segments by length category to get a histogram presenting the number
of segments on each category of segments length. The limits of categories inter-
vals follow the form of geometric sequence and it depend on three main elements



which are: (i) the shortest segment length within the approximated skyline, (ii)
the number of the categories itself, and (iii) the height of the landscape image.
The used sequence helps in having an appropriate histogram for each landscape
image and avoids getting categories with no segments. An example of the ob-
tained histograms is shown in Fig. 2 (c).
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Fig. 2: (a) The cityscape of New York (b) The polygonal approximated segments
of the skyline (c) The segments classification histogram (d) Modified cumulated
histogram

To characterize each skyline with concrete values, we generate histograms with
different distribution in order to highlight the linkage between the number of
segments per skyline and their length and get a significant value of the mean
segments size (Fig. 2 (d)). The mean segments size, derived from these cumu-
lated histograms, and the length of the longest segment on the skyline could
be an indicative couple of values that describes the skyline in a global way: the
skyline is almost artificial or natural. The obtained values and more details are
illustrated on [11]. These values are illustrated in the second and third column
of the table 1 for some samples of skylines.

Table 1: Geometric descriptive values for some skylines

Index % Percentage of

Landscape Image | of the Mean [Longest segment |resisting key points

Segments size at the middle scale
New York 24 68 14.444444
Dubai 40 114 10.465116
London 24 50 8.928571
Rural Landscape 1 18 41 3.773585
Rural Landscape 2 16 23 6.703911
Rural Landscape 3 19 26 4.83871




The curvature analysis By examining the skyline curve, we can affirm that
the curvature goes through a lot of changes. It is clear that the mountain peaks,
the indentation created by a vegetation, and the structure of a building have very
different values of curvature. To calculate the curvature, we admit the formula
(4) where the skyline is the curve defined by (5).
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To well determine the geometric features along the skyline and select the most
important key points, we used the curvature scale-space description CSS. This
descriptor was at the first time introduced by [7] and used for a variety of
applications such as : the shape similarity retrieval [6] and the corner detection
[8]. The process comprises the computation of the curvature values for a curve
that has to be smoothed progressively on each scale via Gaussian kernels. So, we
have a different set of curvatures values at each smoothing scale. The skylines, we
get in different smoothing scales for different rural landscapes images, depict an
important number of key points that replicate the fast variation in the curvature,
nevertheless, these points vanished from low smoothing scales. In contrast, for
urban landscapes, the corners of buildings or any remarkable point fight till
high scales of smoothing. To interpret these notes with values, we represented
the waning of the key points number across different scales of smoothing as
scatter plots (Fig. 3). The concrete number describing these graphics we picked,
is the percentage of key points that resist until the middle smoothing scale .
To validate our observations, these percentages for cityscapes should be higher
than the ones we got for rural landscapes [11]. Some percentages for diverse
landscapes are shown in table 1. These plotted curves validate the short lifetime
of the key points across the scales in rural landscapes, unlike, the case for urban
landscapes where these points persist until very high scales.
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Fig. 3: The lifetime of skyline key points over smoothing scales



3.1.2 Colour and Texton for Skylines

Colour and texture are frequently used as low-level features for image classifica-

tion. Looking at the part of the image under the skyline, we can notice that the
colour and the texture presenting buildings are different from the ones describing
mountains or vegetation. Then, the colour and the texture could be discrimina-
tive features to distinguish between landscapes with urban skyline and rural
landscapes. Searching on recent works proposing a combination between colour
and texture features, we found this one [1] that suggests to compute the image
textons following the original definition [2] and adding the color information.
Starting with the definition of texton as blob attributes, this work proposed a
texture representation based on Bag of Words framework, that represents the
texture-colour image content.
For the colour-texture representation of our landscapes images, we applied the
co-joint texton descriptor (JTD). This descriptor is defined as the probability
density function of a bidimensional random variable(C,S); C concerns the quan-
tised colour texton space and S concerns the quantised shape texton space. The
Fig. 4 depicts an example of a JTD descriptor. This colour texture descriptor
were applied to our SKYLINEScene database to represent the part under skyline
and not the whole image, as shown in the Fig. 5.
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Fig. 5: The Under-skylines images

3.2 Deep Neural Network Training

The deep architecture used in our system was a stacked auto-encoders architec-
ture that has a series of inputs, outputs and hidden layers. So for that, we have



used the nonlinear auto-encoders (Fig. 6) to construct each hidden layer of the
deep neural network. The input layer of the first hidden layer (first auto-encoder)
is the input layer for the all network. Starting from the second hidden layer (Sec-
ond autoencoder), there is always reconstructing of the output of the previous
layer. Namely, for each layer, we have reconstructed features using a number of
neuron smaller than the number of neuron of the previous one/The number of
neuron for the first auto-encoder is bigger than the number of features. Using
this method, we have constructed a deep neural network with two hidden layers
using the extracted geometric skyline features. We have trained the two hidden
layers individually using two unsupervised autoencoders. The objective of the re-
construction of features and reducing the number of neuron of each hidden layer
is to force the network to learn only the most important features and achieve a
dimensionality reduction and separate the maximum between features of classes
[9][10]. Finally, we obtained an unsupervised neural network which is shown in
the Fig. 6.
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Fig. 6: Unsupervised Neural Network Architecture

3.3 Classification

3.3.1 The SVM Classifier

The simple Support Vector Machines Classifier performs with low complexity
than other kernels such as sigmoid, radial basis function, polynomial. For the
SVM classification the challenge is to find the appropriate hyper plane that
separates the data in two classes (positive and negatives). The used architecture
of multiSVM aims to construct two groups separated by the optimal hyper plane.
We can find more than one hyper plane. In fact, another problem appear when
the data are not in linear possibility of separation. The strength of SVM classifier
compared to the Neural Network method is that the SVM is capable to overcome
with the convergence problem in a local minimum of the optimization function. It
scales relatively well to low dimensional data and the trade-off between classifier
complexity and error can be explicitly controlled.



3.3.2 The Softmax Classifier
The SoftMax classifier denoted as SMC is a supervised model which generalizes
logistic regression as

1
1+ exp(—W3)" 2)

fw(3) (Z) = (3)

where f,, s is a sigmoid function having as parameters W ). When the input z of
the softmax classifier is a high-level representation of the skyline features learned
by the Stacked Sparse Auto-Encoder, the Softmaxs parameter W) is trained
with the set explained in (...) to minimize the cost function. By minimizing the
cost function with respect to W) via the gradient descent based approach, the
parameter W) can then be determined.
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4 Experiments and Results

In this section, we evaluate our proposed approach on SKYLINEScene database.
The photographs taken into consideration in our constructed database are the
ones showing the global view of cities or rural places.We experiment, first, the
use of the geometric features extracted from the sky Line to get the classification
accuracies. To find the Auto-Encoder neural network architecture that gives the
best accuracies results, we have experimented three architectures with a final
SoftMax layer. The results are summarized in Table 2. To reveal if the SVM

Table 2: Classification accuracies using a softmax classifier

ﬁzcgitgﬁguﬁi Accuracies|Urban Accuracy|/Rural Accuracy
300 150 85.78% 88.12% 83.7%
30 15 85.7% 88.44% 83.3%
20 10 85.68% 88.34% 83.32%

classifier gives better results than the SoftMax classifier, we make some tests
using different SVM kernel functions. The experimental configuration for the
SVM classifier is as follow: the dataset is randomly divided into ten folds; one
fold for the test and the lasting nine folds for training. The average performance
of ten folds testing data is reported. The parameters of SVMs are set by two-fold
cross-validation on the training data. The reported overall performance is the
average accuracy of the two classes. Table 3 illustrates the accuracies and the
standard deviation values for three different kernel functions.

Table 4 shows the classification accuracy obtained using our proposed neural
approach based on the combination of the geometric, the color and the texture
features from Skylines. These accuracies show up the usability of the geometric



Table 3: Classification accuracies using an SVM classifier

kernel Function |Accuracy|Standard Deviation
Linear 82.86% 0.006
RBF (sigma=5) 83.87% 0.007
Polynomial (3 Planes)| 78.09% 0.0381

features extracted from skylines in the classification of landscapes scene since this
horizon line is a very specific feature to landscapes images. Combining the geo-
metric features with the texton ones, the classification accuracy reaches 84.92%.

Table 4: Classification accuracies depending on features

Features Vector Accuracy|Standard Deviation
Geometric (Skyline) 83.87% 0.007
Color and Texture (Texton)| 62.97% 0.0012
Geometric+Color+Texture | 84.92% 0.001

To have a global vision about the performance of our proposed system for context
scene classification, we summarized in the Table 5 the related works mentioned
in the state of the art. We can notice that there is obviously differences between
the number of classes and also the images per classes. Our approach proves it
robustness in landscapes scenes classification behind the existing approaches.

Table 5: Comparison of our system with the state of the art related works

Image per| Scene | Total

Works Datasets . Image size|Results
Class |Classes|images
[12] MSRC-21 ~13 21 591 320x213 80.6%
(3] Natural scene dataset ~100 6 700 480x720 | 78.2%
[13] The Stanford background ~90 8 715 320x240 | 81.2%
Our approach SkylineScene 1000 2 2000 320x240 | 84.92%

5 Conclusions

This paper introduce a new neural approach for landscapes scenes classification
based on a very specific feature which is the skyline and the color-texture fea-
tures. To represent these combination of low-level features, we build a sparse
stacked Auto-Encoders architecture to have a new structure of our input data.
The new SKYLINEScene database, containing a specific collection of rural and
urban landscapes photographs, was created to evaluate our approach. The clas-
sification accuracies reached are very competitive and they confirm that the
skyline is a significant geometric feature for landscapes scenes.

Our work with the geometric features of the skyline should be expanded by using
other tools to describe better the skyline. The results obtained using our skyline-
based approach to classify landscapes scenes will be compared with similar works
based on a variety of local and global features.
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