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Abstract. This work is about simultaneous segmentation of different foreground 

objects from a collection of images with heterogeneous contents. Our idea is to 

propagate the segmentation information between images in order to detect 

foreground objects in all these images simultaneously, under the hypothesis of 

using categorized or uncategorized images, rather than resorting to image co-

segmentation that forces the use of similar categorized images. In fact, given an 

input image, the objective is to integrate seamlessly other images in the general 

foreground model, in order to benefit the segmentation of the foreground objects 

in this image. Indeed, the proposed method aggregates general information, on 

foregrounds as well as on backgrounds, from a collection of images. To this end, 

the method is based on an energy minimization function. The linear dependence 

of the foreground histograms is firstly estimated to optimize the proposed energy 

function. Then, an iterative optimization of each image permits to remarkably 

optimize the final segmentation result for all images composing the input 

collection. Extensive experiments demonstrate that the suggested method allows 

full-object segmentation of the foreground from a collection of images composed 

of different classes of objects. Indeed, the validation of the accuracy on four 

challenging datasets (iCoseg, Oxford Flowers, Caltech101 and Berkeley) shows 

that the proposed method compares favorably with the state-of-the-art of 

foreground object segmentation from a collection of images. Besides, it has the 

challenging ability to deal accurately with uncategorized objects. 
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1 Introduction 

The current explosion in digital images led to the emergence of methods and algorithms 

that proposed to exploit these images, resulting in better applications for users to inter-

act with these data.  Nevertheless, seen the diversity of the used environments, these 

datasets are often noisy even for categorized objects’ collections. In addition, these da-

tasets are typically heterogeneous and very large. Thus, there is an urgent need for 

standard methods to efficiently segment objects of interest in large image collections 

with heterogeneous contents. In fact, object segmentation from a collection of images 

forms an essential step for many computer vision applications [1, 2], such as content-

based image structuration, indexing and retrieval, interactive image editing, scene un-

derstanding, action recognition [3, 4], image annotation, human pose estimation [5, 6], 

object recognition [7, 8] and facial detection [9, 10].  

Most existing relevant methods, for this purpose, mainly those based on co-segmen-

tation, aim to extract the shared object from a set of images, having varying sizes and 

characteristics but related to the shared object. Recently, co-segmentation methods per-

form well if the appearance of the shared objects in a set of images has different degrees 

of variability. Nevertheless, since even a single object is often comprised of heteroge-

neous textures and colors, the accurate co-segmentation of foreground objects is still 

an open research problem. To deal with this problem, we propose in this work simulta-

neous segmentation method of salient objects by analyzing image collections consisting 

of heterogeneous images from various sources.  

The main idea of the proposed method is that the visual appearances are often shared 

between objects of the same category, and even over disparate categories [11]. Thus, 

we propose a method that leads to extract foreground objects in a set of images, whether 

this collection of images contains similar images (i.e. belonging to the same semantic 

class) or heterogeneous ones (i.e. images belonging to different semantic classes). The 

core objective of this method is to orient the problem of salient object detection to a 

much easier problem of co-segmentation. Moreover, we explore the linear dependence 

of the foreground histograms, in order to segment accurately objects independently of 

their classes. 

The remaining part of this paper is organized as follows. In Section 2, we briefly 

discuss the related work on the foreground object extraction. In section 3, we describe 

the proposed method for segmenting foreground objects in a set of images with 

heterogeneous contents. Extensive experiments, on various challenging datasets, are 

summarized in Section 4. Finally, we produce a conclusion with some directions for 

future works in Section 5. 

2 Related work 

In this section, we review related work on the general framework of foreground object 

extraction in digital images. In fact, many methods have been recently proposed for 

extracting salient objects from a clean collection of categorized images, where catego-

rized objects are referred to objects in the same category [12]. These methods address 
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the problem of joint segmentation of different instances of a single category of object 

across a collection of images [13], in order to exploit a large amount of contextual in-

formation from the image collection to optimize the separation between the foreground 

objects and the background. Such an issue is referred to as the co-segmentation of cat-

egorized objects, a closely related task to co-detection [14, 15], and has been actively 

studied in recent papers [16, 17]. In fact, co-detection and co-segmentation methods 

were introduced to exploit the collective power of a collection of images. In particular, 

most co-segmentation methods [18, 19, 20] are based on low-level image appearance 

information and they formulated the problem of co-segmentation as an energy 

minimization problem. Image co-segmentation methods started by segmenting the 

common objects in two images of an object [20], multiple images with the same single 

object [21], multiple classes in each image [22] or multiple images with more than one 

object in an image [23].  

More recently, other methods focused on the co-segmentation of multiple image 

groups with different characteristics but related to the same general object [17]. Indeed, 

various methods [13] have focused on simultaneous segmentation of categorized ob-

jects, through either supervised learning (given user interactions) [23, 24, 25] or unsu-

pervised learning [26, 27], from all images. Most of these methods model the appear-

ance cues [23, 24], the object shape [27] and/or subspace structure [23] across the image 

collection. In fact, there exists two main families of methods. On the one hand, to ben-

efit object segmentation, co-segmentation methods rely on shared appearance of the 

object of interest between views, high variability between backgrounds across views, 

and discrimination between foreground and background appearance distributions [28]. 

On the other hand, silhouette-coherent extraction methods approaches rely on geomet-

ric consistency of the segmentations, usually building some form of dense shape repre-

sentation of the foreground object [28].  

Since silhouette-coherent extraction methods are complex and computationally in-

volved due to the updates of dense shape representations [28], co-segmentation meth-

ods are much more used. In general, most existing methods of segmentation of catego-

rized objects were built on the assumption that all images in the input collection contain 

the target object. Thus, they may not work well when there are some noisy images (i.e. 

images that do not involve the target category of object) in the given collection, what 

is the case for collections gathered by a text query from image search engines [13]. To 

overcome this limitation, we propose in this work a method for the joint co-segmenta-

tion of foreground objects from all images in a heterogeneous collection.  

The suggested work goes one step further to directly segment uncategorized object 

from a noisy image collection, while previous works all assumed that images from the 

input collection all contain the same target categorized object. There are few co-seg-

mentation methods [22, 29] that further conduct the co-segmentation of multiple objects 

of multiple categories. These methods assume that each image should contain at least 

one object among multiple known categories. In contrast, we co-segment simultane-

ously a collection of uncategorized images with different object instances of unlimited 

number of unknown categories. 
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3 Proposed method 

Our intuition is to obviously profit of foreground information as well as of background 

information, notably the spatial context, across a collection of uncategorized images in 

order to provide valuable information for object segmentation. In fact, the proposed 

method is based on linear dependence of the generated foreground histograms. This 

leads to an interesting optimization model and effective solutions for tandem objects 

segmentation of a high number of images. In fact, solving the co-segmentation problem 

usually returns to the minimization of an energy function that can be generally 

represented by: 

𝜩(𝑰𝟏,  𝑰𝟐,  … ,  𝑰𝒏) =   ∑ ∑ 𝑫𝒊,𝒑𝒙𝒑𝒑 + ∑ ∑ 𝑺𝒊,𝒑𝒒𝒑~𝒒
𝒏
𝒊=𝟏

𝒏
𝒊=𝟏 |𝒙𝒑 − 𝒙𝒒| + 𝜶. 𝑮(𝑭𝟏,  𝑭𝟐,  … ,  𝑭𝒏), (1) 

where, 𝜻 = {𝑰𝟏, 𝑰𝟐, … , 𝑰𝒏} is the input collection of 𝒏 images. The first two terms are the 

Markov random field (MRF) energy terms for each image, where 𝑫 and 𝑺 are a data 

term and a smoothness term, respectively. The variables 𝒙𝒑 and 𝒙𝒒 denote the pixel 

label, such that 𝒙 = 𝟎 for background and 𝒙 = 𝟏 for foreground. The last term 𝑮 is a 

global term that penalizes the difference, or maximizes the similarity, between the 

foreground histograms 𝑭𝒊, where i∈{𝟏,… , 𝒏}, relatively to the 𝒏 input images. The 

coefficient 𝜶 expresses the relative weights of the global term. Several methods [18, 

19, 20, 22, 30, 31, 32, 33, 34, 35, 36] have been recently introduced to evaluate the 

global term. They are based on the general model of (1). Nevertheless, they only focus 

on similar images, where simultaneous segmentation of different images has not been 

explored. In this work, we tackle the above problem, in order to segment the foreground 

objects from a set of images with homogeneous or heterogeneous contents. 

The first step of the proposed method looks to generate histograms of the input im-

ages. It consists in providing a binary segmentation of each image in order to separate 

the foreground from the background. In fact, given the number of bins 𝑲, each pixel of 

each image is associated to one of the 𝑲 bins of the corresponding histogram. Then, a 

binary segmentation of each image partitions the set of pixels into foreground and back-

ground pixels, using the decision variable for segmentation 𝒙, and we define a K-di-

mensional vector 𝑯𝒊
⃗⃗ ⃗⃗   for each image 𝐼𝑖 , where �⃗⃗⃗� 𝒊(𝒌) is the number of pixels in the im-

age 𝑰𝒊 that were associated to the kth histogram bin. Then, we derive a matrix 𝑯 of size 

𝑲 × 𝒏 that includes all the generated histograms  �⃗⃗⃗� 𝒊(𝒌), each as a column. This matrix 

can be expressed by the sum of the two matrices 𝑭 and 𝑩 [19]: 

𝑯 = 𝑭 + 𝑩,                                                                             (2)  

where, 𝑭 = [𝑭𝟏, … , 𝑭𝒏] and 𝑩 = [𝑩𝟏, … , 𝑩𝒏] are the foreground and background 

histograms.  

The purpose of the second step is to make the columns of 𝑭 similar for foreground 

objects of the same class and dissimilar for different foreground objects, while seg-

menting simultaneously objects from all input images. Note that the matrix 𝑭 of size 
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𝑲 × 𝒏 gathers all generated histograms of the foregrounds, such that each column of 

the produced matrix 𝑭 corresponds to the foreground histogram of an input image. To 

do that, we made use of linear dependence of the foreground histograms’ vectors and 

this task returns to search the rank of 𝑭. In fact, for similar objects, foreground vectors 

𝑭𝒊 must be similar or linearly dependent in the general case to assume invariance 

against scale variation. Thus, the rank r of 𝑭 must be equal to one. Otherwise, for het-

erogeneous images, foreground vectors 𝑭𝒊 must be dissimilar or linearly independent 

and the rank r of 𝑭 should be equal to the number of foreground objects in the input 

collection. In cases where a precise matrix 𝑭 of rank r cannot be found, a “slack” in the 

form of a small (sparse) residual [21] 𝑷, may be permitted, where 𝑭 = 𝑹 + 𝑷. Once we 

defined the matrix 𝑹, the object segmentation model also includes the MRF segmenta-

tion terms for each image. Thus, the object segmentation energy is expressed by the 

following minimization problem: 

𝐦𝐢𝐧
𝒙

∑ (∑ 𝑫𝒊,𝒑𝒙𝒊,𝒑
𝑳
𝒑=𝟏 + ∑ 𝑺𝒊,𝒑𝒒𝒚𝒊,𝒑𝒒

𝑳
𝒑=𝒒=𝟏,𝒑~𝒒 + 𝜶| 𝑭𝒊 − 𝑹𝒊|𝟐

𝟐
)𝒏

𝒊=𝟏 ,         (3) 

where, 𝒙𝒊,𝒑 ∈  {0, 1}, 𝒚𝒊,𝒑𝒒 ∈  {0, 1}, 𝑫 and 𝑺 are the data and smoothness terms of the 

random Markov field, 𝑭𝒊 =  �⃗⃗⃗� 𝒊𝒙𝒊 and 𝒚𝒊,𝒑𝒒 = |𝒙𝒊,𝒑 − 𝒙𝒊,𝒒|. The variables 𝒙𝒊,𝒑 and 𝒙𝒊,𝒒 

denote the labeling 𝒙 of two neighboring pixels 𝒑 and 𝒒 of the ith image, and 𝑟𝑎𝑛𝑘(𝑹) 

is the number of the foreground objects in the studied collection. Then, the objective 

model penalizes 𝑷 to minimize the proposed energy function and to make a small var-

iation within the matrix 𝑹. Thus, the proposed objective model is expressed as follows: 

𝐦𝐢𝐧
𝒙

∑ (∑ 𝑫𝒊,𝒑𝒙𝒊,𝒑
𝑳
𝒑=𝟏 + ∑ 𝑺𝒊,𝒑𝒒𝒚𝒊,𝒑𝒒

𝑳
𝒑=𝒒=𝟏,𝒑~𝒒 + 𝜶| 𝑷𝒊|𝟐

𝟐
)𝒏

𝒊=𝟏 ,       (4)                              

where, 𝑷𝒊 is the residual matrix of the ith image. In addition, we assume that Gaussian 

mixture model (GMM) weight is generated and already available for each image. This 

is used to construct a Markov random field data term and the smoothness term that will 

be used for the object segmentation. 

4 Results 

In this section, we present the experimental results of the proposed method (PM) on 

various standard datasets. In fact, Figure 1.a presents a sample of object segmentation 

outputs for the image classes “skating”, “airshows_plane” and “pandas” from the 

iCoseg dataset, and Figure 1.b illustrates the obtained results for a sample of 18 flower 

images, covering many species, from the Oxford Flowers dataset. In our experiments 

for both datasets, we used different groups of similar images, with varied number of 

images in each group, as well as varied foreground positions, shapes, locations, colors 

and sizes in each image. We conclude that the proposed method allows a precise 

segmentation of the objects of interest in all the images simultaneously. Note that in 

accordance with existing works [20, 21, 30], generation of histograms is based on the 

use of a combination of color, texture features, and SIFT. The number of bins for each 

color channel was between 10-20. 
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Moreover, Table 1 shows a comparison of the proposed method with the most 

relevent methods of the state-of-the-art [30, 31, 35, 37, 32, 16]. In fact, accuracy scores, 

on sixteen image classes from the iCoseg dataset, are computed for each method (some 

of the visual results are shown in Figure 1.a). We notice a high accuracy for the 

proposed method compared to other co-segmentation works, in terms of accuracy 

average, and even for each class separately, except for three classes (“taj mahal”, 

“gymnastics” and “statue of liberty”). Indeed, the proposed method does not 

significantly outperform the state-of-the-art cosegmentation method [32] for two 

classes “taj mahal” and “statue of liberty”. In fact, this method [32] is based on con-

sistent functional maps for transporting properties between the RGB images. 

Table 1. Accuracy scores of various object segmentation methods on the iCoseg 

dataset. 

iCoseg Datasets [30] [31] [35] [37] [32] [16] PM 

Alaskan Brown 

Bear 
74.8 86.4 90.0 90.0 90.4 93.5 96.1 

Red Sox Players 73.0 90.5 90.9 90.9 94.2 96.5 97.7 

Stonehenge1 56.6 87.3 63.3 91.3 92.5 93.0 96.2 

Stonehenge2 86.0 88.4 88.8 84.2 87.2 83.5 90.9 

Taj mahal 73.7 88.7 91.1 81.7 92.6 88.7 88.1 

Elephant 70.1 75.0 43.1 86.2 86.7 90.4 96.9 

Panda 84.0 60.0 92.7 92.2 88.6 81.2 96.7 

Kite 87.0 89.8 90.3 94.9 93.9 96.6 98.3 

Kite Pandas 73.2 78.3 90.2 90.9 93.1 83.8 97.3 

Gymnastics 90.9 87.1 91.7 97.7 90.4 95.8 93.0 

Ferrari 85.0 84.3 89.9 92.7 95.6 91.7 95.5 

Skating 82.1 76.8 77.5 79.9 78.7 81.7 94.8 

Women Soccer 

Players 
76.4 82.6 87.5 86.7 89.4 93.0 95.7 

Balloon 85.2 89.0 90.1 92.7 90.4 96.5 99.3 

Statue  of Liberty 90.6 91.6 93.8 91.1 96.8 92.7 91.0 

Brown bear 74.0 80.4 95.3 86.2 88.1 94.8 97.7 

Average 78.9  83.5  85.4  89.3  90.5  90.8  95.3  

 

Besides, the state-of-the-art cosegmentation method [37] outperforms the proposed 

method for the “gymnastics” class. This method [37] uses a dense correspondences 

between images to capture the sparsity and visual variability of the common object over 

the entire database. These failures to surpass these methods on such classes can be 

explained by the strong edges in the background for “taj mahal” images, the view-point 

variations for “gymnastics” images and partial occlusions of the foreground object for 

“statue of lıberty” images. Note that we have restricted our selves to only 16 classes, 

among 38 ones, seen that  accuracy scores of all compared methods are available just 

for the classes presented in the Table 1. Moreover the code of some methods has not 
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been made available, thus, we directly report the accuracy scores provided in their 

papers. 

Furthermore, Figure 2 shows object segmentation results on a challenging sample of 

images form the Berkeley dataset (Figure 2.a) and the Caltech101 dataset (Figure 2.b). 

In fact, for the first image dataset, we selected some complex images with high 

variablity of the foreground and backgroud. The obtained results are very encouraging, 

even for tiny foreground objects (e.g. the first image and the sixth one). Nevertheless, 

the segmentation of the foreground objects is not complete for some rare cases (e.g. the 

deer horns do not appear in the segmented foreground of the second image) and this is 

mainly due to the close homogeneity, of the missing parts of the object, with the 

background. For the second dataset of images, we successfully eliminate the 

background, however, we do not extract perfectly all the foreground objects. The 

challenge of this image dataset lies in the extreme changes in lighting of the foreground 

objects. 

5 Conclusion 

The work presented here has focused on simultaneous segmentation of categorized and 

uncategorized objects from an image collection. The main contribution of this work is 

to make co-segmentation approaches applicable to a significantly more general frame-

work that has not been addressed before, as far as we know. In fact, the proposed 

method is based on energy minimization function that evaluates the linear dependence 

of the foreground histograms computed for each input image. The proposed method, 

which is applicable to a variety of object categories, will be beneficial, for segmenting 

foreground objects independently of their classes, especially if the object of interest is 

not in the center of the image or is of size different from the other objects’ sizes. Indeed, 

experimental results show that the suggested method is able to extract the intact objects 

simultaneously from a large set of category-independent images, even in the case of 

dramatic changes of their shape and size, and in the presence of complex backgrounds.  

As far as future works are concerned, we aim to compare the foreground objects 

rather than the totality of the images for image comparison. This task may be explored 

for image classification, image retrieval and key frame extraction for videos [38]. Be-

sides, as results indicate that the suggested method scales easily to large number of 

images, since it is able to exploit a large amount of contextual information (on fore-

grounds as well as on backgrounds) from the image collection what permits more robust 

foreground/background segmentation, we will try to test it on very large-scale datasets. 
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(a) 

 
(b) 

Fig. 1. Input images and resulting segmentations, while using the proposed method, for 

categorized objects from the iCoseg dataset (a) and the Oxford Flowers dataset (b). 

 



9 

 
(a) 

 
(b) 

Fig. 2. Input images and resulting segmentations, while using the proposed method, for 

uncategorized objects from the Berkeley dataset (a) and the Caltech101 dataset (b). 
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