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Abstract. With the recent development in ConvNet-based detectors,
a successful solution for vessel detection becomes possible. However,
it is essential to access a comprehensive annotated training set from
different maritime environments. Creating such a dataset is expensive
and time consuming. To automate this process, this paper proposes a
novel self learning framework which automatically finetunes a generic
pre-trained model to any new environment. With this, the framework en-
ables automated labeling of new dataset types. The method first explores
the video frames captured from a new target environment to generate
the candidate vessel samples. Afterwards, it exploits a temporal filtering
concept to verify the correctly generated candidates as new labels for
learning, while removing the false positives. Finally, the system updates
the vessel model using the provided self-learning dataset. Experimental
results on our real-world evaluation dataset show that generalizing a fine-
tuned Single Shot Detector to a new target domain using the proposed
self-learning framework increases the average precision and the F1-score
by 12% and 5%, respectively. Additionally, the proposed temporal filter
reduced the noisy detections in a sensitive setting from 58% to only 5%.

Keywords: maritime surveillance, vessel detection, convolutional net-
works (CNN), ConvNet, self-learning, automated dataset creation

1 Introduction

With recent advances in automated surveillance systems, maritime and har-
bor authorities start actively exploiting machine vision techniques. In such an
advanced systems, an important application is to monitor the maritime environ-
ment against contingent hazards jeopardized by unknown pathless watercrafts.
In order to realize this, surveillance systems have to process and analyze the
visual data collected by cameras deployed along the shorelines.

Surveying the conventional visual monitoring methodologies, object detec-
tion is routinely regarded as the first main task [1,2]. Common historic methods
have achieved robust results by exploiting regional variations of pixels, as a
distinctive indication of moving object presence (e.g. background subtraction
approaches) [3,4]. However, the fluctuating nature of water as a dominant back-
ground for a typical maritime scene leads to failure when using such conventional



detection methods. Additionally, a maritime surveillance camera does not only
capture water, but also land pieces and infrastructure. Consequently, irrelevant
objects moving in non-water regions would initiate or cause false positives. As a
strategy for handling this challenge, irrelevant objects could be neglected using
methods proposed to extract clusters of water pixels as regions of interest [5].
However, falsely detected/missed regions triggered by complex scenes and sce-
narios still expose the system to detect unrelated objects. Moreover, maritime
scenes often contain stationary vessels next to the shorelines, which are not de-
tected either.

Contemporary development in convolutional neural networks (ConvNets)
have substantially refashioned automated object detection procedures by de-
liberately seeking for the anticipated target patterns according to their inherent
properties [6,7]. ConvNet detectors principally pursue the following scheme: fea-
ture extraction, bounding box generation, and classification. Among the state-
of-the-art detectors, Single Shot Detector (SSD) [8] exceedingly outperforms its
competitors in terms of speed and achieves satisfactory detection accuracy. In [8],
the network has been successfully evaluated on several classical benchmark image
sets. Although the manifold categories of objects are covered in those datasets,
after investigating the samples, one can notice that images have a low resolu-
tion and are predominantly encompassing the intended object. Moreover, the
challenging outdoor surveillance cases like complex background, miscellaneous
weather conditions, divergent occlusion scenarios, multiple various-sized objects,
different object distances to cameras, are not represented in classical benchmark
samples. However, our research is based on the European APPS research project,
aiming at industry-oriented Advanced Plug & Play Smart surveillance systems,
where we consider all previously mentioned complex maritime surveillance sce-
narios.

Within the discussed setting, our objective is to enhance object detection
with improved analysis based on deep learning. However, in first experiments,
testing a pre-trained ConvNet model on the scenes having different character-
istics from the original training set often failed to provide acceptable results.
Consequently, the development of scene-specific object detectors has recently
emerged as an attractive research topic pursued in many state-of-the-art publi-
cations [9–12]. These specific methods commonly attempt to automatically as-
semble appropriate samples from a target domain and then re-train the available
model. In accordance with this, our main contribution is to extend the SSD to
the ship detection problem and design a new transfer learning framework to
achieve high precision in detection at a low false negative rate.

In this paper, we aim at exploiting ConvNets to detect vessels on genuine mar-
itime surveillance image sequences. Initially, we found out that specific datasets
dedicated to one harbor often cover a few camera viewpoints only (sometimes
even from the same location) and show vessel types that are partly restricted
and dominant for the related specific industrial harbor area. As a consequence,
the training with such datasets leads to a specific detector that is not suited for
a broad set of harbor areas because of limitations in camera setup and intrinsic



parameters, which all leads to a lower performance for other environments.
In this paper, we therefore generalize the finetuned SSD on arbitrary scenes,

scenarios and vessel types, and we propose a novel self-learning framework for
maritime surveillance applications. The proposed system adopts the following
blueprint. Firstly, it generates candidate samples from a new dataset using the
finetuned vessel-oriented SSD architecture. These supplementary images are cap-
tured by a different camera in varying setups based on disparate locations and
having various contexts. Secondly, the generated false positive candidates are
discarded by endorsing the samples labeled as correct. To perform this, a dual-
condition criterion is employed: a) evaluate the confidence score of detections,
and b) apply a temporal filtering strategy to investigate the dynamics of the de-
tected box over the sequence. Finally, the network enriches the verified sample
set by adding images from successfully learned source data. This preserves the
system from losing the already learned useful source information. Additionally,
the model will be corrected on the source samples which unexpectedly prompt
false detections. We evaluate the method on an annotated image set from various
locations in several cities and suburbs in the Netherlands (including Amsterdam
and Rotterdam) and Turkey (Istanbul). The images of this dataset are extracted
from videos captured at different day/year-times. These images include objects
with divergent size, captured from different camera positions and setups, appear-
ing occlusions, object truncations, etc. Fig. 1 illustrates a few examples extracted
from this dataset.

This paper is organized as follows. Section 2 provides an overview on related
work. Section 3 explains the proposed method. Section 4 presents the experi-
mental results and validation. Section 5 concludes the paper.

2 Related Work

This section provides a brief overview on the research work on ConvNet transfer
learning that performs the finetuning to adapt the object detector to the specific
scenes.

Deep-learning based classifiers are widely exploited in many practical appli-
cations [6] because of their advantageous. Furthermore, also for ConvNets, this
development has encouraged industry-oriented researchers to deploy them even
in products. As a basic requirement, ConvNets need to be trained by suitable
training sets. However, challenging practical cases are often not represented in
the data produced in a laboratory. If those datasets are limited, semi-supervised
and weakly-supervised learning-based methods can be exploited.

Self-learning aims to automatically sample data from a target domain and
finetune a detector for the specific visual patterns. The main assumption is that
finetuning a generic pre-trained detector with automatically extracted labels
from an arbitrary set of target domain images, would adapt the detector to the
target environment conditions.In [9], the transfer learning methods tuning a de-
tector to a specific target domain, are categorized into three main groups.



Fig. 1: Six example images from Evaluation set.

The methods falling into the first group [13], adjust the source learning pa-
rameters to enhance the model accuracy in an objective scope. These methods
exploit prior knowledge about source data like visual information. The second
group [14] aims at reducing the dissimilarities between the source and target
domains by exploiting techniques for adapting distributions, i.e. to manipulate
the marginal and conditional distributions to reduce the data dimension in both
domains. In order to improve the ConvNet performance on a target domain, the
third category of methods [9] enhances the training set by appending appropri-
ate samples from the target domain. With this definition, our work belongs to
the third group, since it automatically labels the data from the target domain.

Augmenting the complete source dataset with new samples extracted from a
target environment increases the size of the training set and requires more iter-
ations to convergence [13]. The work in [15] deploys a combination of the source
samples together with new samples from a target scene. The method proposed
in [11] collects only new samples from a target domain to produce the transfer
learning dataset. Obviously, this method looses the advantageous information of
the source data. In [16], the method gathers new samples from a target domain
and combines those with the beneficial source samples only. Other methods ex-
ploit information like visual cues and contextual attributes, motion features, to
enrich the training set by selecting useful samples from a target domain [17].
Additionally, the method in [10] deploys a sequential Monte Carlo filter to spe-
cialize a generic classifier to the specific scenes.

SSD (Single Shot Detector) is a feedforward ConvNet that evaluates the pres-
ence of an object instance in the pre-defined default bounding boxes, followed
by a non-maximum suppression stage to produce the final detection. This de-
tector allows to omit the region proposal generation stage, encapsulating all the
computations in a single network. As stated in [8], SSD achieves 76.9% mAP on
the PASCAL dataset. This ConvNet has also proved to be a fast general object
detector, which is essential for real-time surveillance applications.

In this paper, we extend the SSD network to address multiple vessel detection
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Fig. 2: Architecture of the proposed self-learning method.

problems. Firstly, the SSD network is pre-trained using the VGG-16 model [18]
and will be finetuned on more than 48,000 maritime images. Then, we follow
a bootstrapping procedure to improve the efficiency of the finetuned model on
the training set. Additionally, we propose a novel target-domain specialization
framework to automatically adapt the network to any dataset, captured by cam-
eras with different intrinsic and setup. We also provide a challenging evaluation
set, which consists of 1,041 annotated maritime surveillance images.

3 Architecture Pipeline

3.1 System Overview

Fig. 2 illustrates the architecture of the proposed system, containing two main
stages. In the first stage, an initial deep model of vessels is trained on top of the
SSD using an image set collected from the current domain. We refer to these
images as the initial dataset in the remainder of this paper. Since the main
idea of this work is to propose a robust self-learning framework to generalize an
initial model (pre-trained on the current domain) to a new target domain, it is
not important which initial dataset is used in the first stage. It can be a generic
benchmark dataset (e.g. PASCAL), or it can be collected and labeled from the
current domain by the user. As mentioned before, we specifically focus on the
vessel detection problem as part of our research for maritime surveillance within
the industry-oriented APPS project. Therefore, we generate our initial model by
finetuning a pre-trained PASCAL-based VGG model, using a non-public vessel-
oriented dataset.

The second stage provides a self-learning block, which automatically selects



the useful data from both the initial and the target-domain samples and finetunes
the network. In the remainder of this paper, we will refer to these images as the
“self-learning dataset”. The second stage is divided into three sub-stages. The
first and second sub-stage find those images from the initial dataset that result
in false and true detections, respectively, to establish the self-learning set. The
third sub-stage produces the candidate samples from the target domain and
verifies them through a temporal filtering approach. Finally, the vessel model is
updated with the self-learning set. The following subsections explain the dataflow
and individual architectural modules in detail.

3.2 Deep Vessel Detection Model

A captured scene from a typical maritime environment contains various kinds of
objects and structures (e.g. cars on the shorelines, bridges, buildings, etc.). In
order to robustly detect all kinds of vessels independent from the surrounding
environment, we employ ConvNet networks. For a surveillance application, the
system should detect ships in real-time. Moreover, it should be robust against
the real-world noisy data. Therefore, in this work, we have adopted the SSD
detector. Here, the VGG model is used as the base model. We first finetune the
network on a vessel-oriented image set. The system uses this as the initial model
and supplies this to the second stage.

3.3 Self-Learning Process

The lack of labeled training data is a critical challenge for exploiting ConvNets
in practical surveillance applications. Additionally, the performance of a trained
deep detector often drops when testing for the new target domain, mainly when
the scene structure or the camera characteristics change. To handle these chal-
lenges, self-learning has emerged as an interesting research topic among the
state-of-the-art work.

In this second stage, we propose a novel self-learning data-augmentation
framework for maritime surveillance applications. The input of this stage is
the initial vessel-oriented model. Here, we aim at automated creation of the
self-learning dataset to correct the initial vessel model and adapt the model to
the new target domain. This second stage consists of three main parts, each
appending new samples to the self-learning dataset.

Correction Samples The SSD is trained on the initial dataset during the first
stage. However, when we apply the network to the initial vessel-oriented training
images, we face high amounts of false positives/negatives. This is a common
machine learning problem and often happens since both the labeled objects and
the background produce similar features at the training phase. Nevertheless,
after exploring the false detections, we have found several unexpected cases,
where the vessel is clearly in front of the camera. Therefore, the system starts
generating the self-learning dataset by adding randomly selected samples from
the initial images causing false detections.



Useful Source Samples After applying the initial vessel model to the initial
set, we observe plenty of images yielding just true positives. Obviously, the lack
of those frames in the self-learning dataset deprives the system from useful infor-
mation. Therefore, the system enriches the self-learning dataset using a random
set of images including only those detected vessels. This ensures that the useful
information from the source training set will be present among the self-training
images.

Target-Domain Adaptation Samples Although the initial dataset includes
more than 48,000 images covering several types of the weather conditions, all
images share a similar background and are captured by the same camera. Conse-
quently, both the precision and detection rate drop when the network is applied
to a new target domain (i.e. images captured by a different camera or from a
new environment containing new vessel types and/or background). In order to
address this problem, we have employed a self-learning process.

First, we alternatively extract random frames from the new target domain to
make another image set, which is referred to as the temporary set. The system
automatically generates a large number of candidate labels from the temporary
set for the target-domain adaptation purpose. Since the network is already fine-
tuned for vessel detection, it detects most of the watercrafts located at a close
distance to the camera. A small fraction of far vessels are also detected. Detection
misses mostly occur on vessels positioning far away from the camera. However,
we have noticed that the absence of missed detections in the self-learning dataset
does not affect the finetuning performance, since those missed vessels are typi-
cally detected in the next frames.

An important aspect is temporal filtering of the candidate labels. Briefly,
the proposed self-learning framework first applies the initial model to the new
target domain to produce the annotation labels. However, since the initial model
is trained on the initial dataset, it does not generate the label for most of the
desired new target-domain objects. In order to increase the number of annotated
objects, we perform the detection with a low confidence score. Nevertheless, such
a score results in more noise regions. However, we have noticed that false pos-
itive detections rarely happen for water clusters. Many false positives arise on
the shorelines, bridges, buildings, e.g. on the objects that have special vessel-
like structures. In order to refute the false detections, we propose to extract
and use information from the frame sequence. Since the near-shoreline regions
remain mostly/partly stationary during short intervals (a few seconds), the pro-
posed system removes those false detections by performing a temporal filtering
technique to discard the detected boxes with non-dynamic content. The filter
considers the average value of the subtracted pixels over the entire bounding
box to investigate the variation in the region through the short-time intervals.
If the calculated variation is higher than the noise threshold (TN ), the detected
bounding box is maintained as a true label. Otherwise, the system neglects the
box.

Although the proposed temporal filter removes most of the false detections,



still few labels of background regions remain among the correct labels with ves-
sels. However, since the final signal-to-noise ratio is fairly high (see the Section 4),
these defect labels do not considerably affect the framework performance. Ad-
ditionally, the temporal filtering sometimes removes vessels moving at a far dis-
tance from the camera, since in short-time intervals those vessels’ pixels do not
change. This case can also happen for vessels standing next to the shorelines,
especially when the water is not wavy. However, since we do not need to la-
bel all the visible vessels, this case is not critical. Concluding, according to the
experimental results provided in the following section, the ratio between the
correctly removed false detections and the incorrectly removed true positives,
is rather high. Moreover, the ratio between removed background labels and the
background labels remaining after the filtering, is also high.

In addition to the false detection boxes, the proposed system also ignores
the objectless frames (i.e. the frames without detected vessels). At the end, the
remaining frames will be added to the self-learning dataset. As the last step, the
network will be finetuned with a low learning rate on the self-learning dataset.

4 Empirical Validation

This section begins with providing an overview on the experimental materials
and process. Afterwards, we validate the proposed framework.

4.1 Experimental Process

A. Datasets

Botlek Dataset: In the first stage, the VGG-based SSD network is fine-
tuned on our vessel-oriented initial dataset. Since this image set was captured
from the Botlek region in the port of Rotterdam, we will refer to it as the Botlek
dataset in the sequel of this paper. The Botlek dataset consists of 48,364 sam-
ples, which are extracted from videos shot in the Botlek region. The videos cover
6 different viewpoints on the region. Since the recordings were running for sev-
eral months, a vast variety of weather conditions and daytimes are represented
in this dataset. The camera model used in the recordings is Axis Q1604, which
is a surveillance camera providing a resolution of 1, 536×2, 048 pixels, at 25 fps.
Fig. 3 illustrates three Botlek example frames.

Evaluation Dataset: To improve robustness of the finetuned network, we
have recorded several videos from various locations in many waterways (lakes,
channels, rivers, sea sides) in the Netherlands (including Amsterdam and Rot-
terdam) and Turkey (Istanbul). These videos were recorded during different
day/year-periods. The videos contain a vast variety of camera setups embracing
different viewpoints and heights. Additionally, several vessel types and detection
scenarios are represented, including multiple occluded vessels with divergent
sizes and distances to the cameras. Furthermore, water region-types like rivers,



Fig. 3: Three example images from the Botlek dataset.

lakes, and under-bridges are covered. For the recordings, we have used the Canon
D5500 camera with 1, 080× 1, 920 pixel resolution. We have separated 50 videos
for evaluation, randomly extracted 1,041 images and manually annotated those
to make an evaluation dataset. It is important to mention that the videos used
in the evaluation set are exclusively detached from the rest of the data.

Temporary Dataset: After separating the mentioned 50 videos for the
evaluation set, we select another set of 20 videos from our new recordings to
represent the new target domain. Then, we alternatively extract random frames
with short-time differences from these videos to make the temporary set. Al-
though a minority of these images contain similar background as the evaluation
set samples, many different scenes are also included.

B. Architecture realization details

PASCAL-SSD: Our SSD network is configured based on an image reso-
lution of 512 × 512 pixels. We compared the performance of the VGG-based
SSDs pre-trained with the PASCAL VOC, COCO, and ILSVRC datasets on
the evaluation set. Since the PASCAL-trained SSD produced the best detection
results, we use this model as the basis for our work and will refer to this combi-
nation of network as PASCAL-SSD in the remainder of this paper. The model
is pre-trained for 240,000 iterations.

Botlek-SSD: At the first stage, we finetune the PASCAL-SSD on the Botlek
dataset for 196,855 iterations. A 25-% fraction of the images is used as test data
and the rest of the images as training data. We start the finetuning at a learning
rate of 0.001 and decrease the rate by a factor of 10 after 143,000 iterations. The
finetuning is stopped when the final loss converges to 1.06. We call the resulting
model Botlek-SSD, which will be supplied to the second stage.

Self-Learned SSD: As mentioned in the architecture section, generation of
the triple self-learning training set is the main task of the second stage. To this
end, first the Botlek-SSD performs the detection on the Botlek training set. De-
spite the 99-% precision rate with 59,759 correctly detected boxes, still 470 false
positive and 10,438 false negative boxes appear among the results, spreading
over 8,199 images. To represent the correction samples, the proposed system



randomly adds 911 images out of these frames to the self-learning dataset. Ad-
ditionally, the system arbitrarily picks 3,089 samples out of the 40,165 images
providing just true positives, to keep the useful information of the source data.

To complete the self-learning dataset, the Botlek-SSD is applied on the tem-
porary set to automatically generate the target-domain adaptation candidate
samples. In this step, the system detects the boxes that provide confidence
scores higher than 0.1. Although this low threshold value seems to increase the
risk of false detections, the subsequent temporal filtering approach automati-
cally verifies the target-domain adaptation samples and removes the irrelevant
boxes. However, these exceptional rare cases occur when the illumination of the
scene suddenly changes, or the detector recognizes a water region as a vessel.
Nevertheless, these cases occur at a negligible rate. Here, the system selected
2,205 samples out of the 5,480 temporary set images and added them to the
self-learning dataset.

Finally, the target-domain adapted model is produced by finetuning the
Botlek-SSD on the self-learning dataset for 2,000 iterations with the learning
rate of 0.0001.

4.2 Validation Results

In this subsection, we compare the self-learned SSD with the PASCAL-SSD and
the Botlek-SSD. We also investigate the temporal filtering performance.
Temporal Filtering Performance: The proposed self-learning framework ap-
plies a low confidence score to produce a high number of candidate samples.
This low score often results in many false detections of irrelevant objects. Since
the initial model is already trained on vessels, and vessels intrinsically expose a
structure in pixels, these false detections rarely occur on structureless dynamic
water pixels. According to our experiments, partly-stationary background areas
are the most likely regions that cause this detection noise. Our detector often
produces false detections on the bridges and vessel-like buildings. Consequently,
the proposed framework uses the temporal information of the frame sequences to
identify and ignore the falsely produced candidate labels through the temporal
filtering approach. In this subsection, we provide the statistical analysis of the
temporal filtering algorithm.

The statistical analysis is as follows. After applying the Botlek-SSD (initial
model) to the 5,480 images of the temporary set, the images and their corre-
sponding candidate labels are processed by the temporal filtering block. This
filter removes 3,275 images, since each frame has neither a detection, nor one
or more produced candidate labels surviving the temporal filtering. In order to
provide a statistical analysis on the performance of the proposed temporal filter-
ing method, we investigate the remaining images. Since manual validation of all
the labels from 2,205 remaining filtered images is too labor intensive, we explore
250 randomly selected annotated images for an approximate analysis. Prior to
the temporal filter, the selected images contain 1,276 candidate labels, includ-
ing 743 noise labels and 533 vessel labels. The filter correctly removes 680 noise
boxes, while falsely keeping 63 noise labels as a vessel, i.e. 91.52% of the noise



Fig. 4: Two temporal filtering output examples.

labels are correctly removed. Moreover, the filter correctly retains 454 vessel la-
bels, which means only 14.82% of the vessels are removed by the filter. Overall,
58.23% of the provided candidates were noise labels prior to filtering and the
temporal filter decreased this ratio to 4.94%. Fig. 4 illustrates two examples on
how the temporal filtering removes the falsely detected candidate labels.

Self-Learning Framework Performance: Generally in a real-world out-
door monitoring application, items like the object size, distance to the camera,
noise, occlusion, truncation, scene illumination and weather conditions, are con-
sidered when defining the performance expectations from the system. In order
to accurately analyze the efficiency of the proposed target-domain adaptation
approach, we select the vessel size, occlusion, and truncation as the criteria to
derive the complete dataset into three versions of varying detection difficulty as
follows:
-Easy evaluation dataset : the bounding-box size is more than 10,000 pixels, no
occlusion, and no truncation;
-Moderate evaluation dataset : the bounding-box size is between 3,000 and 10,000 pix-
els, less than 30% of the vessel pixel area is occluded or truncated;
-Hard evaluation dataset : the bounding-box size is less than 3,000 pixels, more
than 30% of the vessel pixel area is occluded or truncated.

We evaluate the previously introduced three methods on each level of diffi-
culty. Tables 1, 2, and 3, illustrate the results. Each dataset class is tested three
times with different Intersection-over-Union (IoU) thresholds. All the methods
have performed the detection with the confidence score of 0.5. According to Ta-
ble 1 (easy case), although the two vessel-adapted networks produce more true
positives, the PASCAL-SSD surprisingly outperforms these methods in terms
of the Average Precision (AP). However, by increasing the level of difficulty,



Table 1: Method comparison on Easy evaluation dataset.

PASCAL-SSD Botlek-SSD Self-learned SSD

IoU 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

TP 874 843 825 858 843 817 911 898 881
FP 621 625 640 874 889 915 760 773 790
FN 245 249 264 234 249 275 181 194 211
AP 0.58 0.57 0.56 0.50 0.49 0.47 0.55 0.54 0.53
F1 0.66 0.66 0.65 0.61 0.60 0.58 0.66 0.65 0.64

the vessel-adapted methods produce better results. On the Moderate evaluation
dataset, the Botlek-SSD is still outperformed by the PASCAL-SSD in terms
of AP by 10%. However, the self-learned SSD produced the same AP as the
PASCAL-SSD while showing a 6% higher F1-score, since it provides 235 more
correct detections and 88 less object misses.

We select the Hard evaluation dataset with IoU=0.5 as the criterion to com-
pare the three methods in detail. For this dataset, the self-learned method out-
performs the Botlek-SSD by 12% in terms of the AP. It also produces 279 less
false detections, 118 less missed detections and 118 more true positives. Although
the PASCAL-SSD is comparable with the proposed method in AP by producing
a just 2% lower value, it provides 294 less correct detections, which means that
network results in a 5.8% higher miss rate. Additionally, the proposed method
outperforms both the PASCAL-SSD and the Botlek-SSD by 7% and 5%, re-
spectively, for the F1-score. Fig. 5 provides a comparison of the outputs of the
methods on four evaluation frames.
It is important to mention here that the initial model used in this paper is
produced by finetuning the PASCAL-SSD on the non-public Botlek dataset. In
case that an initial model is created only on the PASCAL dataset, e.g. without
finetuning on a specific labeled maritime dataset, the performance results of the
framework may become lower.

Table 2: Method comparison on Moderate evaluation dataset.

PASCAL-SSD Botlek-SSD Self-learned SSD

IoU 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

TP 1230 1214 1182 1361 1337 1286 1481 1459 1417
FP 495 511 543 830 854 905 567 589 631
FN 1196 1212 1244 1065 1089 1140 945 967 1009
AP 0.71 0.70 0.69 0.62 0.61 0.59 0.72 0.71 0.69
F1 0.59 0.58 0.57 0.59 0.58 0.56 0.66 0.65 0.63



Fig. 5: Comparison of methods. From left to right, columns represent the outputs
of the PASCAL-SSD, the Botlek-SSD, and the Self-learned SSD, respectively.

5 Discussions and Conclusions

The traditional object detection methods often fail to detect vessels under severe
weather or raging water conditions. Additionally, the false negative probability
of the detection of stationary vessels increases. However, a ConvNet-based sys-
tem can enhance the possibilities of successfully addressing the vessel detection
problem in the industry-oriented maritime surveillance applications, since Con-
vNets search for the desired objects independent of the surroundings.

In order to achieve robust results with ConvNets for a specific application,
one needs to finetune a pre-trained model on a comprehensive annotated dataset
collected from the desired target domain. However, by changing the location or
capturing equipment, a system would need a new training dataset. Neverthe-
less, manual creation of a labeled training set is costly in terms of time. In
order to solve this problem, the state-of-the-art methods are broadly exploiting
semi-supervised techniques to design a framework that automatically finetunes a
pre-trained ConvNet from the new raw data. Therefore, this paper has proposed
a robust ConvNet self-learning framework for maritime vessel detection.



Table 3: Method comparison on Hard evaluation dataset.

PASCAL-SSD Botlek-SSD Self-learned SSD

IoU 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

TP 1479 1457 1417 1690 1660 1593 1784 1758 1711
FP 268 290 330 541 571 638 286 312 359
FN 3615 3637 3677 3404 3434 3501 3310 3336 3383
AP 0.85 0.83 0.81 0.76 0.74 0.71 0.86 0.85 0.83
F1 0.43 0.43 0.41 0.46 0.45 0.43 0.50 0.49 0.48

In this work, we first finetune a pre-trained single shot detector on an anno-
tated maritime image set. This provides an initial vessel model, which is affected
by the current domain characteristics. Second, we develop a self-learning frame-
work which automatically generates the candidate labels from the target domain
data, and performs a temporal filtering approach to verify the labeled samples.
Finally, the system finetunes the model on the produced self-learning dataset.
When applying this proposed framework to a SSD trained on a vessel-oriented
dataset, the resulting network outperforms the initial model with a promising
average precision of 83% at a high detection rate. This method also provides a
5% higher F-1 score. We have also presented an annotated evaluation dataset for
the vessel detection problem, which contains challenging scenes and scenarios.

Future work will improve the proposed method in producing more verified
labels from the target-domain data. Moreover, we plan to improve the detection
efficiency on the vessel positioning at a far distance from the camera.
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