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Abstract

The generalized Fourier Transform on a given group is applied to invariant feature extraction in the case of a gray-level image.

Thus, a new complete and convergent set of invariant features under planar similarities is proposed using the Analytical Fourier-
Mellin Transform (AFMT). So, this set gives a distance between the shapes which is invariant under similarities.
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1. Introduction

ln some cases, a scene description needs to be in-
variant under certain geometrical transformations of
the Euclidean space. The invariant description is
usually achieved with the moment invariants, Four-
ier descriptors, Fourier-Mellin descriptors which
have been the subject of numerous papers. A useful
general-purposepattern invariant description method
in computation vision should make accurate and re-
liable recognition of an object possible. Therefore,
such a description should necessarily satisfy a num-
ber of criteria. The following is a non-exhaustive list
of such criteria:

1.A fast computation (or to minimize the cornpu-
tation time needed).

2. A good numerical approximation.
3. A powerful discrimination.
4. A completeness of the description which guar-

antees that if two images have the same invariant
representation then the shapes they represent should
also be similar.
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5. A distance between shapes which is invariant
under a class of geometric trahsformations.

6. A stability criterion which guar.anteesthat iftwo
invariant representations have a smaIldifference, the
objects they represent should also have a small shape
difference.

ln the literature, authors usually discuss the tirst
three criteria which are very important.

The completeness criterion was tirst introduced by
Crimmins (1982) and mentioned by other authors
(Gauthier et al., 1991; Arbter et al., 1990; Ghorbel,
1992a). Crimmins ( 1982) gave a counterexample for
the Fourier descriptors based on the modulus and he
proposed a new complete set of invariant parame-
ters. The mathematical detinition of the stability cri-
terion was specitied in the case of closed contours by
Ghorbel (1992b) where a complete and stable set of
invariants was proposed. This property implies the
existence of a natural Euclidean distance between
shapes.

ln this paper, we intend to.derive a complete set of
shape descriptors for gray-level images, which are in-
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2.1. Haar measurevariant under similarity transformations. At first, we
recall the useful results of the commutative harmonie
analysis in order to introduce an invariance ap-
proach based on the generalized Fourier Transform
on a given abelian group. Such a general approach
presents two advantages:

- It elucidates the completeness criterion for an in-
variant description.

- It can solve more generalized questions: invari-
ance under other classes of transformations (for ex-
ample: the affine transformations, the projective
transformations, ...). ln this sense, Segman et al.
( 1992) introduce an approach based on the theory
of Lie groups where the transformation group could
be nonlinear.

At last, due to the divergence of the Fourier-Mel-
lin Transform (FMT) near the origin, we propose a
new approach by defining the Analytical Fourier-
Mellin Transform (AFMT) and thereby a new com-
plete invariant description will be proposed. We
underline the implementation difficulties (polar co-
ordinates, the approximation of the AFMT, ...).

The proposed set of invariant parameters is con-
vergent, so it gives a distance between the shapes
which is invariant under similarity transformations.
However, the complexity of the mathematical nature
of this set of invariants does not help us in the theo-
retical verification of the stability criterion.

2. Someresults ofthe commutativeharmonie analysis

Throughout this paper, we shall denote the addi-
tive group of real numbers as IR,the multiplicative
group of nonzero [respectively positive] real num-
bers as IR*[respectively IR~], the unit circle of the
complex plane iCas §1, the group of positive planar
similarities as SimO+ and the multiplicative group
ofnonzero complex numbers as iC*.With their topol-
ogy these groups have a topological group structure.
FinaIly, we remark that aIl the se groups are locally
compact and abelian. For this, we Iimit our studies in
this paper to the commutative harmonie analysis. We
denote by L. (G, IJ.)the normed vector space of com-
plex functions defined on G.

fisinV(G,IJ.) = f If(x) 1 dlJ.(x) < +00
G

Definition 1.Let Gbe a locallycompact abelian group.
Then IJ.is an invariant measure on G if and only if
lJ.(aB)=IJ.(B), for every a in Gand B a Borel set of
G.

This implies that for every functionfin LI (G, IJ.)

ff(ax) dlJ.(x) = ff(x) dlJ.(x) .
G G

Definition 2.1J.is a Haar measure on G if and only if
it is positive and invariant.

Haar Theorem (1932). ln every locally compact abe-
lian group G, there exists a unique normalized Haar
measure.

Example. (1) The normalized Haar measure in the
real vector space IRnis the Lebesgue one,

dlJ.(x., X2, ...,xn) =dx. dx2... dxn.

(2) The Haar measure of the multiplicative group
IR*is

dlJ.(x) =dx/x.

2.2. A group representation

Definition 3. Let H be a vector space. T is a represen-
talion of G if:

l. T(x) is an endomorphism of H.
2. T( e) =IdHwhere IdHis the identical operator of

H and e is the identity element of G.
3. T(xy) = T(x)T(y) for aIl x and y in G.
4. T is continuous on G.

Definition 4. T is irreducible if and only if H has not
a proper subspace S invariant with respect to T
(T(S) c;tS).

DefinitionS. Tis unitaryifand only if the matrix T(x)
is unitary for aIlx in G.

Definition 6. The set of aIl irreducible and unitary
representations of G that we denote (; is called the
dualofG.
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Proposition 1. IfG is abelian then G the dual ofG is a
locally compact and abelian group and any irreduc-
ible and unitary representation becomes a scalar. Then

there exists a unique normalized Haar measure J1.(;in
G.

Examples. (1 ) If G=IRthen G=IRand T).(x ) = eib:.
(2) If G=§ 1then G=Z and Tn(x) =einx.
(3) IfG=IR*orlR~ then G=lRand Ta(x)=xia.

2.3. Fourier transform on a group

Definition 7. Letfbe in L 1 (G, J1.)where Gis assumed
abelian.TheFourierTransformon Gis definedby:

Jo,) = ff(x)[TÀ(x)]-ldJ1.(X) (1)
G

where J1.is the normalized Haar measure of Gand
TÀ(x) is an irreducible and unitary representation of
G.

Examples. (1) If G=lRn then G=lRn, and for a11Àin
IRn

J(À)= f f(x) e-i(x,).) dx
R"

is a multi-dimensional Fourier Transform.
(2) IfG=§ 1 then G=Z, and for a11n in Z

](n)= f f(ei6) e-in6dO
[0,2,,]

is the Fourier coefficient for a 21tperiodic function.
(3) If G =ZI N7L (the cyc1ic group of integers) then

G=ZI nZ, and for a11n in ZI N7L

](n)= .!..P=i-1f(p) e2ixnp/N
N p=o

is the Discrete Fourier Transform (DFT).
(4) If G=IR~ then G=IR, and for a11Àin IR

+00

J(À)= f f(X)X-iÀ~ = f f(x)x-iÀ-1dx
R~ 0

is the Mellin Transform.

2.4. Inverse Fourier transform

Proposition 2. IfJbelongs to L'(G, J1.(;),then the In-

-
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verse Fourier Transform exists and it is defined by.

f(x)=J(x)= f J(À)[TÀ(x)] dJ1.(;(À) (2)
(;

where J1.(jis the normalized Haar measure of Gand
TÀ(x) is an irreducible and unitary representation of
G.

Proof. When G is abelian, Gbecomes a 10ca11ycom-
pact and abelian group, then there exists a normal-
ized Haar measure J1.(jin G (HaarTheorem)and then
any irreducible and unitary representation of the dual
group becomes a scalar (Proposition 1). Then the
Fourier Transform on the dual group Gexists and can
be defined by:

g(x)= f g(À)[TÀ(X)]-l dJ1.(;(À.).
(;

Then the Inverse Fourier Transform can be obtained
by the formula given in Proposition 2. For more de-
tails see (Dieudonné, 1974). 0

Example. If G=IR~ then G=IR, and for a11x in IR~
+00

f(x)= ~ f J(À) xiÀdÀ.2m
-00

is the inverse Me11intransform.

3. A complete invariant description

3.1. Analytical Fourier-Mellin transform

It is weil known that the direct similarity group on
the plane is equivalent to the space of polar
coordinates:

JI={(r,O) 1r>O and 0<0<21t}.

The fo11owing multiplication is defined in JI

(r, 0). (r', 0') = (r.r', 0+0') .

JI is a 10ca11ycompact and abelian group. The nor-
malized Haar measure is

dJ1.(r,O)=drlrdO

and the dual group of JI is IRxZ. 80, the Fourier
Transform on JI willbe defined as:



1046 F. Ghorbel / Pattern Recognition Letters 15 (1994) 1043-1051

+00 2n

](k, v) =Mf(k, v) = f f f(r, e) e -iklJr-ivd: de,
o 0

for kelL and velR . (3)

It is the Fourier-Mellin Transform of the irradiance
distributionf(r, e) in a two-dimensional image ex-
pressed in polar coordinates. The origin of the polar
coordinates can be taken in the image center of grav-
ity in order to obtain invariance under translations.

The integral (3) diverges in general, since the con-
vergence is indeed under the assumption thatf(r, e)
is equivalent to Kra (a> 0 and K a constant) in a
neighbourhood of the origin (the center of gravity of
the observed image). For this reason, we consider the
Analytical Fourier Mellin Transform that we define
here by

+00 2n

Mf(k, s= 0"0+ iv) = f f f(r, e) e -iklJruo+ivd: de,
o 0

for 0"0> 0, kelL and velR . (4)

This integral converges for the positive values of the
real part of the complex number s.

From the commutative harmonie analysis, we can
obtain the Inverse of the FMT (IFMT):

f(r, e) = ~ f Mlk, 0"0+iv) eiklJruo+iv dv. (5)
IR

This is important for the definition of a complete set
of invariant features and for the reconstruction.

The relation between the Analytical Fourier Mellin
Transform (AFMT) of two images f and g having
the same shape (g(r, e) =f(ar, e+ (J», where a is a
scale factor and (Jis a rotation parameter, is given by
the following equations

Mg(k, S=O"o+iv) =a-S eikPMlk, s) (6)

for every integer k, for aIl real numbers v and for a
fixed positive value 0"0.

3.2. A complete invariant description

We use the AFMT without losing image informa-
tion. Therefore, we propose the following solution
which will be formulated in the following theorem.

Theorem 1. Let k be an integer and let s be a complex
number such that its real part is strictly positive and
fixed. Suppose that MI l, 1) and MIO, 1) are not
zero. Then the following sequence of complex-valued
functions:

If(O, 1) =IMf(l, 1) 1 [Mf(O, 1)] -1,

If(k, S=O"o+iv)

= [Mf(k, s) ][Mf(O, 1)] -s+k[Mf(l, 1)]-k

is a complete set of invariant features under positive
and planar similarities.

Proof.
1. Invariance

Mf(k, O"o+iv)=a-uo-iveikP Mg(k, O"o+iv)

for 0"0> 0, k integer and v real number .

1 (0 1) = IMf(l, 1)1 =leiPa-1Mf(l, 1)1 =1 (0 1)
f, Mf(O,I) a-1Mf(0,1) g"

If(k, S=O"o+iv) = [a -seikPMg(k, s)]

X [a-1Mg(0, 1)] -s+k[a-leiPMg(l, 1)]-k

= [Mg(k, s)] [Mg(O, 1)] -s+k[Mg(l, 1) ]k=Ig(k, s).

2. Completeness

Mlk,s)=Ilk,s)[Mll, 1)]k[MIO, l)y-k

=Ilk, s) [110, 1) ]keikPas

where a=MIO, 1) and (J=arg MIl, 1). The set of
invariant features is complete since it is expressed
only according to the AFMT's, a given scale factor a
and a rotation parameter {J. 0

A central problem in image analysis and in com-
puter vision is determining the extent to which one
shape differs from another. The correlation and tem-
plate matching can be viewed as techniques for deter-
mining the difference between shapes. ln order to
meet this goal, we propose to use the invariant de-
scriptions. We define a distance between images
which is invariant with respect to certain transfor-
mations and we precise in the following section the
existence conditions of an invariant distance.

--- -
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Definition 8. We say that two images 01 and O2have
the same shape if and only if s( 01) = O2,wheres is a
positive planar similarity transformation.

The relation "have the same shape" defines in the
space of aU images 0 an equivalence relation, since
the set of planar similarities is a group.

Definition 9. A shape is an equivalence class of ob-
jects in relation. So, the shape space Sis the quotient
space of 0 by the group of positive similarities
SimO+([R2).

Definition 10. A set of scalars {IJ k, s)} is convergent
if there exists a real number p> 1 such that {IJ k, s) }
belongs to U(lXIR,,u), that is to say

+00 P I~

Np(f)=( f k~zl IJk, s=ao+iv)1 dV) < +00.-00

Proposition 3. The existence of a complete and con-

vergent set of invariant features {I (k, s)} implies that
the shape space S is a metric space with one of the fol-
lowing set of metrics

dp(G, H)=

+00 p I/p

(f k~ZI/g(k, ao+iv) -h(k, ao+iV)1 dV)-00

where p> 1, g and h are two images having the shape
Gand H, respectively.

Proof. dp is a metric if and only if the foUowingprop-
erties are satisfied for aU G, H and Kin S:

1. O~dp(G, H) < +00,
2.H=G = dp(G,H)=O,
3.dp(G,H)=0 = H=G,
4. dp(G, H) ~dp(G, K)+dp(K, H),
5. dp(G, H)=dp(H, G).
The first property is verified because of the conver-

genceof the set of invariant features. The second one
cornes from the invariance property. The third is sat-
isfied because the set is complete. FinaUy, the fourth

-- -

and fifth properties corne from the definition of the
metric dp. 0

Unfortunately, the set of invariant features pro-
posed in Theorem 1 diverges (does not converge in
the sense of Definition 10). So it can not give a met-
ric in the shape space.

Example. Letf be a binary image which represents a
half of a disc-shape and let R be its radius,

f(r,O)=1 for(r,O)E[O,R]X[O,1t],
= ° otherwise.

The AFMT of this image is expressed by
R "

MJk, s) = f f e-ikOrS-1 drdO.
o 0

otherwise MJO,s)=1tRs/s.

Then the set of invariant features defined in Theo-
rem 1 becomes for k-:lO

iRS[ (-1 )k_I] (1tR)k-s

IJk, s) = sk( _2iR)k

ik+l1tk-S[(-1 )'s-I]
= 2ksk

and

If(O, 1)=2/1t.

So, the modulus of If(k, s) becomes

1t2k+ 1-<10

Ilf(2k+l,s)l= IsI22k+I(2k+l) and

I/J2k, s) 1=0.

Then this set diverges in the sense of Definition 10.
00

(Np (If) )P= f I I/J2k+ 1, ao+iv) IPdv
keZ

-00

oo

f ( 1t2k+ 1-<10

)
p

= k~Z lao+ivI22k+I(2k+l) dv.
-00

Using Fubini's theorem for measurable positive-val-
ued functions
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=
2P

( )
2kP 1

X J (aij+v2)-p/2dv k~Z ~ (2k+l)p.
-<X>

We denote by C(p) the following integral

-<X>

which is at least strictly positive, so

(Np(If) )P=C(p) k~Z((~Yk (2k~ l )Y = +00.

Then Np(If) diverges, since

[(~Yk (2k~ l)J ->+00 as k->oo .

ln order to define a distance on the shape space S,
we propose in the following theorem, the definition
of a new complete and convergent set of invariant
primitives.

Theorem 2. Underthe assumptions ofTheorem 1and
assuming that {Mf( k, s)} is a convergent set in the
sense of Definition 10, then

If(k, s)

=Mf(k,s)[Mf(l, l)]-kIMf(l, l)lk[Mf(O, l)]-S

is a complete and convergent set of invariant features
under positive and planar similarities.

Proof of convergence.The p-norm of the sequence of
invariants can be expressed as:

~+~ I~

Np(If) =C~Z J 1If(k, ao+iv) IPdV)
0'0-10:>

~+~ I~

=[Mt<O,I)]-OOC~z J IMt<k,ao+iV)IPdV)
0'0-100

since:

1It<k, ao +iv) 1= 1Mt<k, s) 1[Mt<O, 1)] -00.

This implies that

Np (If) = [Mt< 0, 1)] -OONp(Mf) .
The set of invariant features is convergent since ao is
a fixed number. 0

ln order to illustrate the result ofTheorem 2, let us
consider the example of an image which represents
the half of a disc-shape. The set of invariant features
defined in this theorem becomes:

.k+1
fork;éO, It<k,s)=l 7t-S[(_I)k_l]sk '

otherwise It<0, 1) = 2/7t .

Then the expression of its modulus can be written as

27t- 00

1It<2k+ l, s) 1= Isi (2k+ 1)

1It<2k, s) 1=0.

and

Thus, this set is convergent in the sense of L2(ZXIR,
[.1.),since:

1/2 +00 1/2

N2(If)=27t-OOC~0(2k~1)2) (J aij~v2dV)
-<X>

27t-00+1/2

(
l

)
1/2

= ~ k~O (2k+ 1)2 < +00 .

This proves the convergence in the sense of L 2 (Z X IR,
[.1.).

5. Numerical considerations

The AFMT is expressed in polar coordinates. Hs
computation must be done with interpolation since
numerical images are often presented in Cartesian
coordinates. The discrete polar coordinates are
formed by centred discrete circles with the same ori-
gin. For the computation, we use the integer radius:
r= l, 2,3, ...,Rmax.

Unfortunately, these circles do not have the same
number of realistic points. For any circle, we sample
it uniformly with the same step, independently from
the circle. We propose the numerical approximation
of the AFMT by the following formula:

Mt<k, ao+iv) =
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Rmax N(r)-l

(
21tm

)
.

{
2i1tmk

}
L: L: f r - roo+1V-1exp - -

r=1 m=O ' N(r) N(r)

for aIl k in {O,..., N(r) -l} and m in {l, ..., Rmax}.
This formula does not represent a discrete trans-

form but only an approximation of the AFMT.The
IAFMT can be approximated by:

(
21tm

)_
f r, N(r) -

v=+ooN(r)-1 ~ .

{
2i1tmk

}L: L: Mf(k, O"o+iv) rOO+1Vexp~ .v=-oo k=O ( )

6. Experimental results and discussion

ln this experimental part, we deal with a seg-
mented image of the retina. By using the approxi-
mation of the AFMT, we deduce a complete and con-
vergent set of invariant features. This invariant
description allowsus to define a distance between two
retina images of the same person and discriminate
others with these primitives. It allows the detection
of some anomalous evolution of the retina. When we
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consider a dynamic sequence of retina images, the
movement of vessels can be modelised by approxi-
mating the composition of a shift, a rotation, a dila-
tation and a small nonlinear distortion. Thus, the
complete invariant description allows the recon-
struction with the elimination of the movement. With
the stability property, the set of invariants becomes
robust under the small nonlinear distortions between
two successive images.

Fig. 1gives the original image, Fig. 2 represents the
original contour retina image in polar coordinates,
Fig. 3 gives the modulus of the complete and conver-
gent set of invariant parameters of the original con-
tour image expressed in polar coordinates (v is as-
similated as a radius and k as an angle) and Fig. 4
shows the reconstruction of the original contour im-
age by the same set of invariant features using the
completeness and the inversion of the AFMT. Exper-
imentally this figure illustrates that the invariant de-
scription proposed in this paper is complete since we
are able to reconstruct the original contour retina
Image.

ln conclusion, the theory of the commutative har-
monie analysis was used in order to define a com-
plete invariant description in the case of gray-level

--

Fig.1.

--
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Fig.2.

Fig.3.

images. The set of invariant features is complete and
convergent. It allows the definition of a distance be-
tween the gray-Ievel shapes. This distance empha-

sises the independence of differences of rotation, scale
factors and camera positions between two images. ln
the medical context, the invariant distance between
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retina images from the same person taken under dif-
ferent circumstances may serve to examine the prog-
ress of diseases.

Finally, the quite important point related to the
choice of the optimum parameter p of the distance dp
for enhancing pattern separability, can be done with
a statistical approach using a learning sample of ret-
ina images and will be discussed in a forthcoming
paper.
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